Neuroquantology *

Iona Brainstorm 2007 * Blog * About * RUNNING ON EMPTY * Subquantal Ocean * Helix to Hologram * Quantum Bioholography * SEC * Resonant Holography * Cymatics * Acoustic Holography * Neuroholography * Neuroquantology * IONATOPIA Links * What's New

What's New with My Site?

Neuroquantology is the fusion of neuroscience, quantum physics, psychology and philosophy.


NeuroQuantology Journal

NeuroQuantology (An Interdisciplinary Journal of Neuroscience and Quantum Physics) is an electronic journal appeared in the April 2003. It is dedicated to supporting the interdisciplinary exploration of the nature of quantum physics and its relation to the nervous system.


What's New with My Subject?

Neuro-Quantum Parallelism in Brain-Mind and Computers

Mitja Perus
National Institute of Chemistry, Lab. for Molecular Modeling and NMR, Hajdrihova 19, (POB 3430) SLO-1001 Ljubljana, Slovenia, Philosophy Dept. (cognitive science)

Specific characteristics of mind and computers (synergetic and neurocomputers, especially) are reviewed. The characteristics are presented which future computers would have to possess in order to be treated as mind-like. It is argued that for human consciousness a coherence of neural, quantum and virtual (attractor) levels are necessary. Mathematical analogies of the neural-network-theory and quantum mechanics are discussed. These analogies may be a mathematical framework for a research of multi-level cognitive isomorphisms involving complex systems of neurons/synapses, subcellular structures, quantum elements'' (spins etc.), and attractors, because the principles of their collective dynamics are level-invariant.(pp. 173-184)

Keywords:neural network, attractor, quantum, consciousness, mind, coherence, wave-function collapse, pattern-correlation, Green function

On Quantum Mechanics and the Implicate Order:
an Interview with Dr. BASIL J. HILEY

interview conducted by Mitja Perus
National Institute of Chemistry, Ljubljana, Slovenia

Basil J. Hiley
is of the Physics Department, Birkbeck College, University of London
and is the co-author of the ontological interpretation of quantum theory
with the late Professor David Bohm

network-dynamical, informational and phenomenal aspects

Copyright Mitja Perus, 1997
National Institute of Chemistry, Lab. for Molecular Modeling and NMR
Hajdrihova 19 (POB 3430), SI-1001 Ljubljana, Slovenia
Slovene Society for Cognitive Sciences

 Abstract: The article shows how can associative neural networks, quantum systems and their virtual structures (patterns-qua-attractors having the role of mental representations) realize the system-theoretical or processual backgrounds of consciousness. Although ``basic units" of neural and quantum parallel- distributed processes are very different, complex systems of neurons and quantum systems obey analogous collective dynamics which contributes to conscious information processing.



New disciplines that can help to explain consciousness

Scientific disciplines do not progress at uniform rates. The second half of the 20th century has been dominated by advances in new disciplines such as for example molecular genetics, immunology, materials sciences, computer sciences, information technology and high energy particle physics. It is thus not surprising that explanations for the workings of the mind and for consciousness have been sought in the worlds of mathematics (programming) and physics. Mathematics because it provides models to explain functions and physics because the fundamental laws of physics are thought to govern the universe.

Neural networks

The comparison of the human brain to a factory - as if it were like any other organ - has thus evolved into the now commonplace comparison between the brain and the computer. If tissues, cells and molecules are the hardware, what is the software ? A type of software currently in vogue is based on neural network theory. What is a neural network process ? Basically, a training process. The computer is provided with a data-set and with the solutions to problems relating to this data-set. By a system of trial and error, the computer will construct a model of behaviour that gives the appropriate solution to a given problem. This model, based on practice (i.e. concrete examples) and not on theory, can then be applied to solve problems concerning much larger data-sets to which the solutions are not yet known. The synaptic connections of the brain could be likened to neural networks in which case the data would be patterns of impulses.

The structure of the brain is not a single neural network but is formed of multiple networks that relate to each other and interact. As explained by Perus, neural networks have been successful in explaining several aspects of the functions of the mind, even some of the background processes involved in self-awareness, because neural circuits can self-interact.

However, do neural networks explain consciousness ? Can they account for the feelings and emotions we experience when we perceive something ? When looking at this screen, readers will perceive black print against a cream background - a purely physical process - yet they will also undergo a subjective 'interpretative' experience possibly in the form of an individual thought. This internal consciousness arising from a multitude of external factors (colour, presentation, etc...) is highly personal; yet first-person experiences are common to us all and apparently very similar in quality. Can the subjective unity of experience, creativity, intuition, free will ... be accounted for solely by a neural connectionist approach ? Many scientists think not and believe that quantum mechanics may play a part. This is the essence of a fiery ongoing debate.

Quantum mechanics

Many of us will have spent much of their secondary education learning the mechanical physics of Newton and some may have moved on to Einstein's theory of relativity. Less people are familiar with the statistical laws of quantum physics which deal with the infinitely small, with particles (energy quanta) that exist in a multitude of states and whose precise location is only known when the wave functions that describe them collapse into a single state (undergo a quantum jump). A specific feature of quantum physics is that the wave function collapses when it is observed, i.e., the observer and observation are part of the same world. For this reason, a collapse of wave functions, where the state of the brain changes, has been correlated with the crystallisation of thoughts.

As pointed out by Perus, a crucial issue in studying consciousness is one of scale. What is the scale required to describe human consciousness ? If a computer were to reproduce all the neural nets of the brain, how large and powerful would it have to be ? Is all the information in the brain processed by chemical messengers, synapses or are there other, submolecular, routes of communication ?

According to critics of quantum states of mind, information travelling by submolecular routes would need an amplifier if it is not to be drowned by background noise. Some members of the pro-quantum camp have suggested that the microtubule (inner protein scaffolding of the cell) might fulfill this function by permitting the long-range alignment of dipoles that are created by trapped charges in proteins that undergo quantum flip-flops in position. This alignment would represent a coherent quantum state. Might not, they argue, clusters of quantum states be the make-up of memories, creative thought, intuition.... .

Bridging the gap between the pro-connectionist and pro-quantum camps

Perus argues that a higher-level abstract organization, involving a combination of both the neural network and quantum worlds, might provide an explanatory framework for consciousness :
(i) The system of neural-like nets could operate on different scales including a quantum scale,
(ii) In complex dynamic systems, the whole is greater than the sum of the parts and not just an aggregate of independent entities.
(iii) Large scale processes are built up from small-scale processes. A hierarchy of quantum neural -like nets might thus act as an amplification system and create a new quality.
(iv) The mathematics involved in neural nets and quantum physics have analogies. One can imagine associative hierarchies between neural and quantum nets where different types of information become intertwined,
(v) Inherent to quantum physics is a quality of profound unity that could be related to a unified subjective experience.

Perus' thesis is that the inclusion of quantum physics in a description of the structure and function of our brain system provides an added dimension, i.e., a more subtle level of organisation. Like others, however, he cannot answer the question why brain function is accompanied by conscious experience. If the right abstract organisations were one day to be imprinted on silicon chips and the system made to function at the necessary speed, will machines become conscious ? An engineering problem for the 21st century Materials Sciences graduate ?

A footnote on dimensions and scale

On reading Perus' article, the reader may feel that attempting to explain consciousness addresses some of the same problems as trying to explain the universe. Is there a single 'theory of everything' that will account for observations on all scales, from the infinitely small to the infinitely large ?

There are several different types of forces in nature. Weak and strong nuclear forces as well as electromagnetism are described by quantum theory, whereas gravity is described by general relativity (the space-time world). As everyone knows, Einstein introduced the fourth dimension of time. The German mathematician T. Kaluza (1919) added a fifth dimension by unifying space-time with Maxwell's equations for electromagnetism. But how many dimensions does one need to unify all the forces in nature ? According to the theories of the 1990's, 10 dimensions in 'superstring theory' (which can be compacted down to 6 dimensions) or 11 dimensions in the later more comprehensive M-theory. How many dimensions does one need to describe consciousness ?


System-Processual Backgrounds of Consciousness

Mitja Perus
National Institute of Chemistry, Lab. for Mol. Modeling and NMR Hajdrihova 19 (POB 3430); SI-1001 Ljubljana; Slovenia

The article shows how can associative neural networks, quantum systems and their virtual structures (patterns-qua-attractors having the role of mental representations) realize the system-theoretical or processual backgrounds of consciousness. Although ``basic units" of neural and quantum parallel- distributed processes are very different, complex systems of neurons and quantum systems obey analogous collective dynamics which contributes to conscious information processing. (pp. 491-506)

Keywords:consciousness, neural network, attractor, quantum, dendrites, microtubules, multi-level coherence



Mitja Perus

Abstract: We have got a lot of experience with simulations of Hopfield's and holographic neural net mode. Starting with these models, an analogous quantum information proessing system, called quantum associative network, is presented in this article. It was obtained by translating an associative neural net model into the mathematical formalism of quantum theory in order to enable microphysical implementation of associative memory and pattern recognition. In a case of successful quantum implementation of the model. expected benefits would be significant increasa in speeed, in miniaturization, in efficiency of performance, and in emory capacity, mainly because of additionally exploiting quantum-phase encoding.